Review: Product/Quotient Rule - 10/24/16

1 Product Rule

(2:25)
Product Rule: $\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$.
Example 1.0.1 Let $k(x)=\left(x^{2}+4\right)\left(x^{3}-7 x+3\right)$. Let $f(x)=x^{2}+4$ and $g(x)=x^{3}-7 x+3$. Then $k^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)=(2 x)\left(x^{3}-7 x+3\right)+\left(3 x^{2}-7\right)\left(x^{2}+4\right)$.

Example 1.0.2 Let $k(x)=x(7-\sqrt{x})$. Let $f(x)=x$ and $g(x)=7-\sqrt{x}$. Then $f^{\prime}(x)=1$ and $g^{\prime}(x)=-\frac{1}{2} x^{-\frac{1}{2}}$. Then $k^{\prime}(x)=7-\sqrt{x}+\left(-\frac{1}{2} x^{-\frac{1}{2}}\right) x$.

Example 1.0.3 Let $k(x)=\left(3+e^{x}\right) \frac{1}{x^{2}}$. We can rewrite this as $k(x)=\left(3+e^{x}\right) x^{-2}$. Let $f(x)=3+e^{x}$ and $g(x)=x^{-2}$. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=-2 x^{-3}$, so $k^{\prime}(x)=\left(e^{x}\right)\left(x^{-2}\right)+\left(-2 x^{-3}\right)\left(3+e^{x}\right)=$ $\frac{x e^{x}}{x^{3}}-\frac{6+2 e^{x}}{x^{3}}=\frac{-6+(x-2) e^{x}}{x^{3}}$.

2 Quotient Rule

Quotient Rule: $\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}$.
Example 2.0.4 Let $k(x)=\frac{3 x+9}{2 x}$. Let $f(x)=3 x+9$ and $g(x)=2 x$. Then $f^{\prime}(x)=3$ and $g^{\prime}(x)=2$, so $k^{\prime}(x)=\frac{3(2 x)-2(3 x+9)}{4 x^{2}}=\frac{-18}{4 x^{2}}$.

Example 2.0.5 Let $k(x)=\frac{x^{2}}{2-x}$. Let $f(x)=x^{2}$ and $g(x)=2-x$. Then $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=-1$, so $k^{\prime}(x)=\frac{2 x(2-x)-(-1)\left(x^{2}\right)}{(2-x)^{2}}=\frac{4 x-2 x^{2}+x^{2}}{(2-x)^{2}}=\frac{4 x-x^{2}}{(2-x)^{2}}$.

Example 2.0.6 Let $k(x)=\frac{\left(3+e^{x}\right)}{x^{2}}$. Let $f(x)=3+e^{x}$ and $g(x)=x^{2}$. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=2 x$, so $k^{\prime}(x)=\frac{e^{x}\left(x^{2}\right)-\left(3+e^{x}\right)(2 x)}{x^{4}}=\frac{-6+(x-2) e^{x}}{x^{3}}$.

3 Higher Order Derivatives

Definition 3.0.7 The derivative of the derivative of f is called the second derivative of f, and is denoted $f^{\prime \prime}(x)$, or $\frac{d^{2}}{d x^{2}} f(x)$.

Definition 3.0.8 The derivative of the second derivative is called the third derivative of f and is denoted $f^{\prime \prime \prime}(x)$ or $\frac{d^{3}}{d x^{3}} f(x)$.

Definition 3.0.9 In general, the nth derivative of f is denoted $f^{(n)}$ and is obtained by taking the derivative n times.

Example 3.0.10 What is $\frac{d^{2}}{d x^{2}} x^{3}$? It is $\frac{d}{d x} 3 x^{2}=6 x$.

Example 3.0.11 What is $\frac{d^{3}}{d x^{3}} e^{x}$? It is $\frac{d^{2}}{d x^{2}} e^{x}=\frac{d}{d x} e^{x}=e^{x}$. Let $f(x)=e^{x}$. What is $f^{(n)}(x)$? It is still e^{x} !

Example 3.0.12 The first derivative of distance is velocity. The second derivative measures the change in velocity, so the second derivative of distance is acceleration.

Practice Problems

1. Let $f(x)=\left(x^{3}-4\right)(\sqrt{x})$. What is $f^{\prime}(x)$?
2. Let $f(x)=\left(x^{3}-4\right)(\sqrt{x})$. What is $f^{\prime \prime}(x)$?
3. Let $g(x)=\frac{x^{3}+8}{x-1}$. What is $g^{\prime}(x)$?
4. Let $h(x)=\frac{(x+3) e^{x}}{x}$. What is $h^{\prime}(x)$?

Solutions

1. Using the product rule, we get $f^{\prime}(x)=\left(3 x^{2}\right)(\sqrt{x})+\left(\frac{1}{2 \sqrt{x}}\right)\left(x^{3}-4\right)=\frac{\left(3 x^{2} \sqrt{x}\right)(2 \sqrt{x})+x^{3}-4}{2 \sqrt{x}}=\frac{7 x^{3}-4}{2 \sqrt{x}}$.
2. Using the quotient rule, we take the derivative of $f^{\prime}(x)$, which we got from above. We get

$$
f^{\prime \prime}(x)=\frac{\left(21 x^{2}\right)(2 \sqrt{x})-\left(x^{-1 / 2}\right)\left(7 x^{3}-4\right)}{4 x}=\frac{\frac{\left(21 x^{2}\right)(2 \sqrt{x})(\sqrt{x})-\left(7 x^{3}-4\right)}{\sqrt{x}}}{4 x}=\frac{35 x^{3}+4}{4 x \sqrt{x}} .
$$

3. The quotient rule gives us $g^{\prime}(x)=\frac{\left(3 x^{2}\right)(x-1)-(1)\left(x^{3}+8\right)}{(x-1)^{2}}=\frac{2 x^{3}-3 x^{2}-8}{(x-1)^{2}}$.
4. We're going to need both the product rule and the quotient rule here: the product rule will give us the derivative of the numerator. Then $h^{\prime}(x)=\frac{\left[(1)\left(e^{x}\right)+\left(e^{x}\right)(x+3)\right] x-1\left((x+3) e^{x}\right)}{x^{2}}=$ $\frac{\left(x^{2}+4 x\right) e^{x}-(x+3) e^{x}}{x^{2}}=\frac{\left(x^{2}+3 x-3\right) e^{x}}{x^{2}}$.
