Review: Product/Quotient Rule - 10/24/16

1 Product Rule

(2:25)

Product Rule: $\frac{d}{dx}f(x)g(x) = f'(x)g(x) + g'(x)f(x)$.

Example 1.0.1 Let $k(x) = (x^2 + 4)(x^3 - 7x + 3)$. Let $f(x) = x^2 + 4$ and $g(x) = x^3 - 7x + 3$. Then $k'(x) = f'(x)g(x) + g'(x)f(x) = (2x)(x^3 - 7x + 3) + (3x^2 - 7)(x^2 + 4)$.

Example 1.0.2 Let $k(x) = x(7 - \sqrt{x})$. Let f(x) = x and $g(x) = 7 - \sqrt{x}$. Then f'(x) = 1 and $g'(x) = -\frac{1}{2}x^{-\frac{1}{2}}$. Then $k'(x) = 7 - \sqrt{x} + (-\frac{1}{2}x^{-\frac{1}{2}})x$.

Example 1.0.3 Let $k(x) = (3+e^x)\frac{1}{x^2}$. We can rewrite this as $k(x) = (3+e^x)x^{-2}$. Let $f(x) = 3+e^x$ and $g(x) = x^{-2}$. Then $f'(x) = e^x$ and $g'(x) = -2x^{-3}$, so $k'(x) = (e^x)(x^{-2}) + (-2x^{-3})(3+e^x) = \frac{xe^x}{x^3} - \frac{6+2e^x}{x^3} = \frac{-6+(x-2)e^x}{x^3}$.

2 Quotient Rule

Quotient Rule: $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$.

Example 2.0.4 Let $k(x) = \frac{3x+9}{2x}$. Let f(x) = 3x+9 and g(x) = 2x. Then f'(x) = 3 and g'(x) = 2, so $k'(x) = \frac{3(2x)-2(3x+9)}{4x^2} = \frac{-18}{4x^2}$.

Example 2.0.5 Let $k(x) = \frac{x^2}{2-x}$. Let $f(x) = x^2$ and g(x) = 2-x. Then f'(x) = 2x and g'(x) = -1, so $k'(x) = \frac{2x(2-x)-(-1)(x^2)}{(2-x)^2} = \frac{4x-2x^2+x^2}{(2-x)^2} = \frac{4x-x^2}{(2-x)^2}$.

Example 2.0.6 Let $k(x) = \frac{(3+e^x)}{x^2}$. Let $f(x) = 3 + e^x$ and $g(x) = x^2$. Then $f'(x) = e^x$ and g'(x) = 2x, so $k'(x) = \frac{e^x(x^2) - (3+e^x)(2x)}{x^4} = \frac{-6 + (x-2)e^x}{x^3}$.

3 Higher Order Derivatives

Definition 3.0.7 The derivative of the derivative of f is called the **second derivative** of f, and is denoted f''(x), or $\frac{d^2}{dx^2}f(x)$.

Definition 3.0.8 The derivative of the second derivative is called the **third derivative** of f and is denoted f'''(x) or $\frac{d^3}{dr^3}f(x)$.

Definition 3.0.9 In general, the nth derivative of f is denoted $f^{(n)}$ and is obtained by taking the derivative n times.

Example 3.0.10 What is $\frac{d^2}{dx^2}x^3$? It is $\frac{d}{dx}3x^2 = 6x$.

Example 3.0.11 What is $\frac{d^3}{dx^3}e^x$? It is $\frac{d^2}{dx^2}e^x = \frac{d}{dx}e^x = e^x$. Let $f(x) = e^x$. What is $f^{(n)}(x)$? It is still e^x !

Example 3.0.12 The first derivative of distance is velocity. The second derivative measures the change in velocity, so the second derivative of distance is acceleration.

Practice Problems

- 1. Let $f(x) = (x^3 4)(\sqrt{x})$. What is f'(x)?
- 2. Let $f(x) = (x^3 4)(\sqrt{x})$. What is f''(x)?
- 3. Let $g(x) = \frac{x^3 + 8}{x 1}$. What is g'(x)?
- 4. Let $h(x) = \frac{(x+3)e^x}{x}$. What is h'(x)?

Solutions

- 1. Using the product rule, we get $f'(x) = (3x^2)(\sqrt{x}) + \left(\frac{1}{2\sqrt{x}}\right)(x^3 4) = \frac{(3x^2\sqrt{x})(2\sqrt{x}) + x^3 4}{2\sqrt{x}} = \frac{7x^3 4}{2\sqrt{x}}.$
- 2. Using the quotient rule, we take the derivative of f'(x), which we got from above. We get

$$f''(x) = \frac{(21x^2)(2\sqrt{x}) - (x^{-1/2})(7x^3 - 4)}{4x} = \frac{\frac{(21x^2)(2\sqrt{x})(\sqrt{x}) - (7x^3 - 4)}{\sqrt{x}}}{4x} = \frac{35x^3 + 4}{4x\sqrt{x}}$$

- 3. The quotient rule gives us $g'(x) = \frac{(3x^2)(x-1)-(1)(x^3+8)}{(x-1)^2} = \frac{2x^3-3x^2-8}{(x-1)^2}.$
- 4. We're going to need both the product rule and the quotient rule here: the product rule will give us the derivative of the numerator. Then $h'(x) = \frac{[(1)(e^x) + (e^x)(x+3)]x 1((x+3)e^x)}{x^2} = \frac{(x^2+4x)e^x (x+3)e^x}{x^2} = \frac{(x^2+3x-3)e^x}{x^2}$.